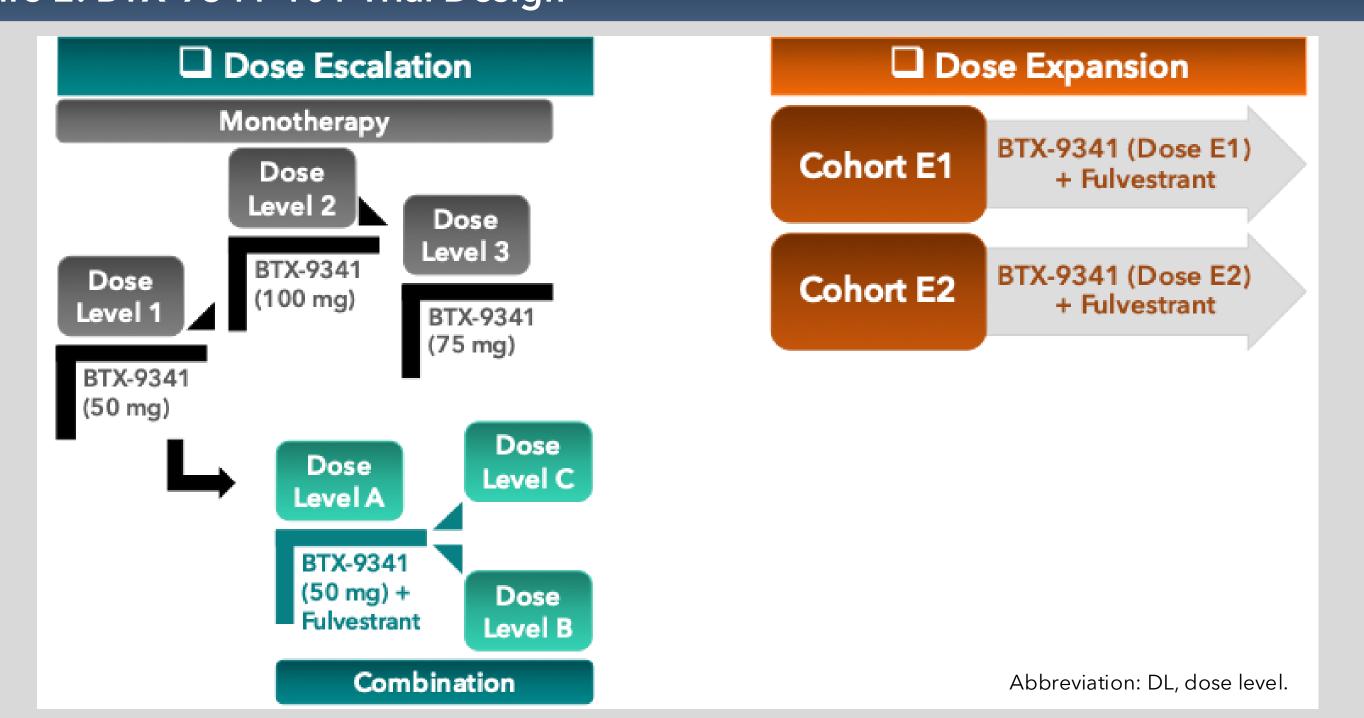

## First-in-human Phase 1 study of BTX-9341, a first-in-class, CDK4/6 bifunctional degrader, as monotherapy and in combination with fulvestrant in patients with advanced and/or metastatic HR+/HER2- breast cancer - first emerging data

Amita Patnaik<sup>1</sup>, Margaret Block<sup>2</sup>, Massimo Cristofanilli<sup>3</sup>, Qiao Liu<sup>4</sup>, Hannah Majeski<sup>4</sup>, Arvind Shakya<sup>4</sup>, Prabhu Rajagopalan<sup>4</sup>, Chetan Deshpande<sup>4</sup>, Danette Powell<sup>4</sup>, Aparajita H. Chourasia<sup>4</sup>, Raymond Urbanski<sup>4</sup>, \*Matthew Goetz<sup>5</sup>, \*Rachel M. Layman<sup>6</sup> ¹The START Center for Cancer Research, San Antonio, TX; ²Nebraska Cancer Specialists, Omaha, NE; ³Weill Cornell Medicine, New York, NY;⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴Biotheryx Inc., San Diego, CA; ⁵Mayo Clinic, Rochester, MN; ⁴MD Anderson Cancer Center, Houston, TX; \*Co-last authors Abstract #: 1757; Presentation ID: PS4-06-04

### BACKGROUND

- BTX-9341 is a first-in-class, oral bifunctional degrader of cyclin-dependent kinase (CDK)4 and CDK6, both clinically validated cell cycle targets in hormone receptor (HR)-positive (+)/human epidermal growth factor receptor 2 (HER2)-negative (-) breast cancer (BC).
- It consists of a CDK4/6 binding molecule conjugated to a cereblon (CRBN) binder via a linker resulting in CRBN-mediated proteasomal degradation of CDK4 and CDK6, which in turn leads to a robust inhibition of RB phosphorylation and cyclin-dependent kinase 2 (CDK2) and Cyclin E transcription (Figure 1).
- Preclinical data highlight its superiority compared with approved CDK4/6 inhibitors (CDK4/6i) in inhibition of phosphorylation of retinoblastoma (p-RB), cell cycle arrest, and in vivo efficacy in BC xenografts.
- BTX-9341 is active in CDK4/6i resistant models with p-RB half-maximal inhibitory concentrations ( $IC_{50}$ ) of 1-15 nM and can overcome key mechanisms that drive CDK4/6i


#### Figure 1: Mechanism of action of BTX-9341



#### STUDY DESIGN AND OBJECTIVES

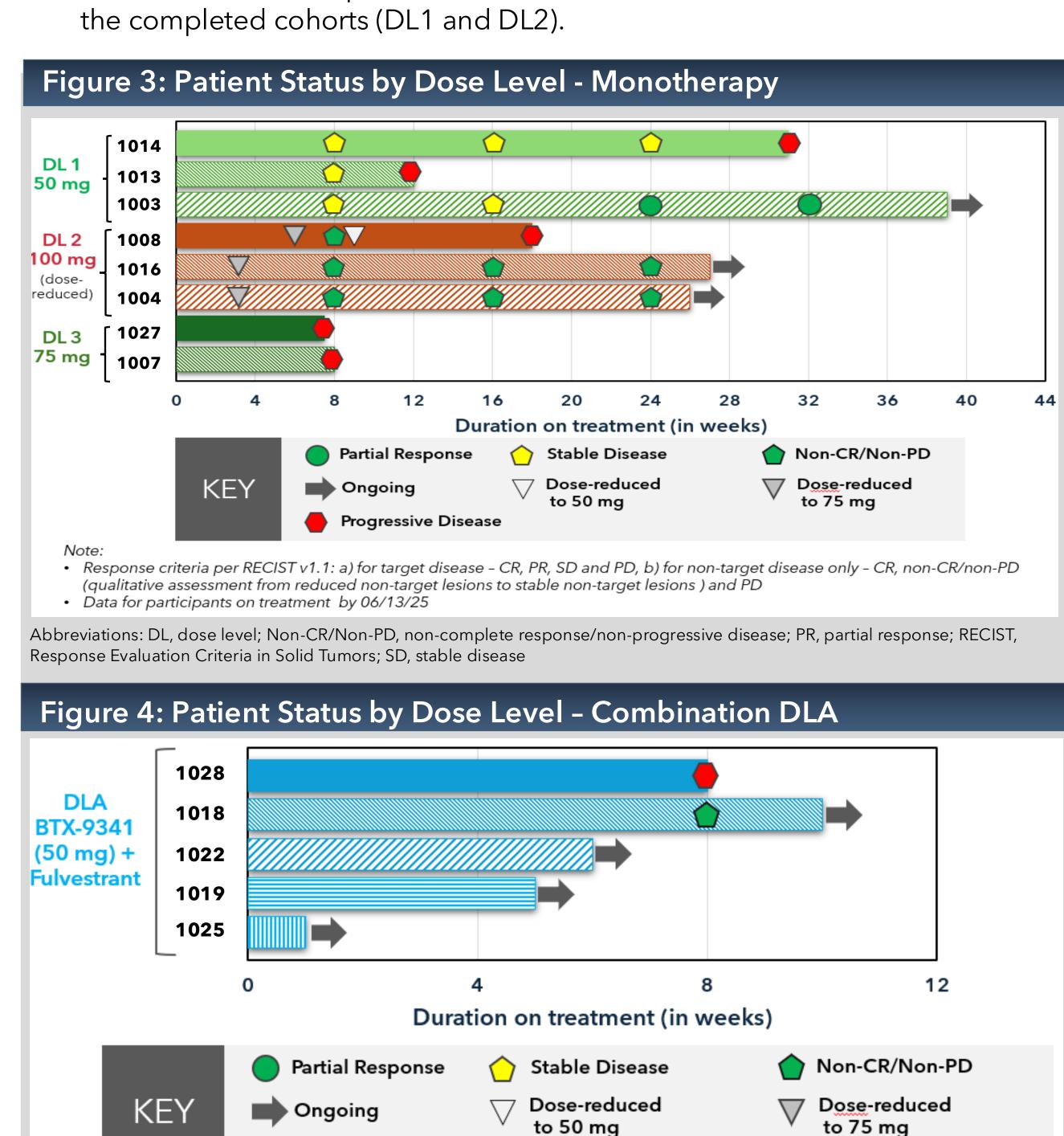
- BTX-9341-101 is a multicenter, nonrandomized, open-label trial to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of BTX-9341 as monotherapy and as combination therapy with fulvestrant in patients with advanced and/or metastatic HR+/HER2- BC who have received prior CDK4/6 inhibitor therapy and have no mutations in retinoblastoma (RB).
- BTX-9341 is administered orally (per os [PO]) once daily (QD) in 28-day treatment cycles.
- The trial consists of initial dose escalation using accelerated titration and a Bayesian Optimal Interval (BOIN) design (Part A) of BTX-9341, both as monotherapy and in combination with fulvestrant (Figure 2). The dose expansion (Part B) of BTX-9341 in combination with fulvestrant will use a Bayesian Optimal Phase 2 (BOP2) design.
- The primary objective of dose escalation is to determine the maximum tolerated dose (MTD) or maximum evaluable dose (MED) of BTX-9341 monotherapy and in combination with fulvestrant. Secondary objectives include the characterization of BTX-9341 on PK and efficacy; exploratory objectives include the assessment of BTX-9341 on PD and PK/PD relationships.
- BTX-9341-101 is currently active and recruiting patients. Early monotherapy data are available from the first-in-human Phase 1a study of BTX-9341.

#### Figure 2: BTX-9341-101 Trial Design



#### RESULTS

#### Demographics and Baseline Characteristics


- As of the data cutoff, 16 patients were evaluated at the following BTX-9341 QD dose levels: 50 mg (dose level [DL]1), 100 mg (DL2), and 75 mg (DL3) monotherapy, and 50 mg in combination with fulvestrant (DLA).
- All patients were female, with a median age of 61 (38-83) years (Table 1).
- Patients received up to 5 lines of therapy in the metastatic setting prior to enrollment.
- Patients were pretreated with a median of 2 (1-6) prior lines of treatment. All patients had prior CDK4/6i treatment; 11 patients had prior chemotherapy, and all had prior endocrine therapy.

| Table 1                                                                 | N=16                |  |
|-------------------------------------------------------------------------|---------------------|--|
| Age (years), median (range)                                             | 61 (38 - 83)        |  |
| Female, n (%)                                                           | 16 (100)            |  |
| White, n (%)                                                            | 15 (93.8)           |  |
| Visceral Disease, n (%)                                                 | 12 (75)             |  |
| Bone-only Disease, n (%)                                                | 4 (25)              |  |
| All Prior Lines of Treatment, median (range)                            | 2 (1-6)             |  |
| ≥3 All Prior Lines of Treatment, n (%)                                  | 5 (31)              |  |
| Prior Lines of Treatment in Advanced/Metastatic Setting, median (range) | 1 (1-5)             |  |
| ≥3 lines in Advanced/Metastatic Setting, n (%)                          | 4 (25)              |  |
| Prior Chemotherapy, n (%)                                               | 11 (68.8)           |  |
| Neoadjuvant or adjuvant                                                 | 9 (56.3)            |  |
| Metastatic setting                                                      | 4 (25)              |  |
| Prior CDK4/6i, n (%)                                                    | 16 (100)            |  |
| Ribociclib                                                              | 4 (25),             |  |
| Months, median (range)                                                  | 6.98 (2.76, 19.84)  |  |
| Palbociclib                                                             | 6 (37.5),           |  |
| Months, median (range)                                                  | 36.45 (2.56, 91.10) |  |
| Abemaciclib                                                             | 8 (50),             |  |
| Months, median (range)                                                  | 8.74 (1 day, 21.78) |  |
| Prior Lines of ET, median (range)                                       | 2 (1-5)             |  |
| Adjuvant Setting, n (%)                                                 | 9 (56.3)            |  |
| Advanced/Metastatic Setting, n (%)                                      |                     |  |
| First line with CDK4/6i                                                 | 14 (87.5)           |  |
| Second line with CDK4/6i                                                | 1 (6.3)             |  |
| Third line with CDK4/6i                                                 | 1 (6.3)             |  |
| Monotherapy                                                             | 2 (12.5)            |  |
| With other agents                                                       | 5 (31.3)            |  |
| PI3K/AKT/mTOR-based therapy, n (%)                                      | 6 (37.5)            |  |
|                                                                         |                     |  |

Abbreviations: AKT, protein kinase B; CDK4/6i, cyclin dependent kinase 4/6 inhibitor; ET, endocrine therapy; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3 kinase

#### Efficacy and Tumor Assessment

- Of the 8 evaluable monotherapy patients, the best overall responses in patients with measurable disease included 1 patient with a confirmed partial response (PR) and 3 patients with stable disease (SD) (first assessed at 8 weeks; i.e., the first time point for assessment in the protocol), and in patients with non-measurable disease, 2 patients had non-complete response/non-progressive disease (non-CR/non-PD) (Figure 3).
- Of the 5 evaluable combination patients in DLA, the best overall response included 1 patient with non-CR/non-PD (Figure 4).
- For all patients, the longest duration on treatment as of the data cutoff was 10 cycles.
- A clinical benefit rate (CBR) (defined as a best overall response CR, PR, or SD for patients with measurable disease or non-CR/non-PD for patients with non measurable disease, per RECIST v1.1 at Week 24) of 66.7% was observed in



Abbreviations: DLA, dose level A; Non-CR/Non-PD, non-complete response/non-progressive disease

Progressive Disease

### Safety

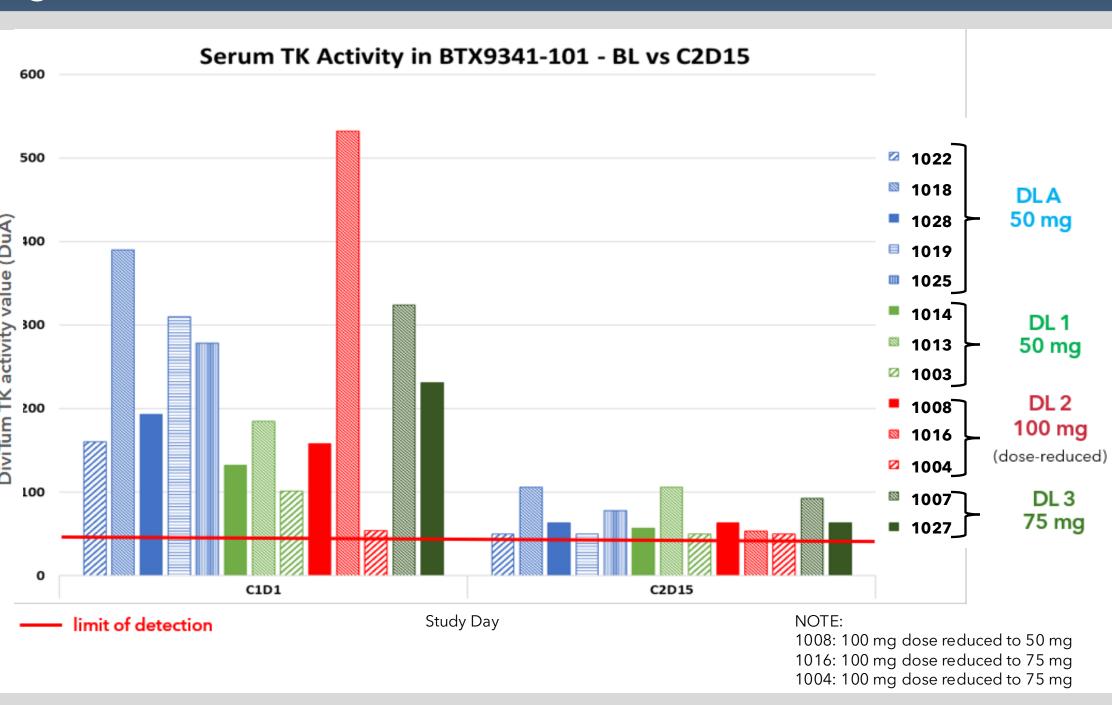
- Treatment-related adverse events (TRAEs) in ≥10% of patients by preferred term for all grades are presented in Table 2.
- The most common TRAEs during the period were decreased neutrophil and white blood cell counts.
- As of the data cutoff, no dose limiting toxicities (DLTs) were observed at any dose levels during the 28-day DLT period.
- There were no Grade 5 TRAEs as of the data cutoff date.
- No TRAEs leading to discontinuation of treatment were
- There were no dose reductions in DL1. The starting dose was reduced in all patients in DL2.
- No serious adverse events (SAEs) were reported.

#### Table 2 **All Grades** Any TRAE, n (%) 2 (12.5) 12 (75.0) TRAEs in ≥10% of Patients by Preferred Term for All Grades **Neutrophil count** 10 (62.5) decreased **Leukocyte count** 2 (12.5) 7 (43.8) 5 (31.3) decreased Lymphocyte count 1 (6.3) decreased **Fatigue** 1 (6.3) 2 (12.5) Abbreviation: TRAE, treatment-related adverse event

For more information on the study and sites, please visit www.clinicaltrials.gov (NCT06515470).

#### Pharmacokinetics

At least 2-fold accumulation was observed after QD dosing, and steady-state trough concentrations were in the range of in vitro  $IC_{50}$ values at DL1 and higher dose levels (Table 3).


| Table 3                           | DL1 (50 mg) | DL2 (100 mg) | DL3 (75 mg |
|-----------------------------------|-------------|--------------|------------|
| C1D1 (single dose PK)             |             |              |            |
| n                                 | 3           | 3            | 3          |
| C <sub>max</sub> , ng/mL          | 12.5 (60%)  | 23.2 (64%)   | 39.0 (66%) |
| T <sub>max</sub> , h <sup>A</sup> | 8 [8 - 24]  | 24 [8 - 24]  | 6 [2 - 24] |
| AUC <sub>last</sub> , ng.h/mL     | 215 (64%)   | 383 (58%)    | 546 (58%)  |

Abbreviations: AUC<sub>last</sub>, area under the plasma concentration time curve from time 0 to the last time point; C, Cycle;  $C_{max}$ , maximum plasma concentration; D, day; PK, pharmacokinetics,  $T_{max}$ , time to maximum plasma concentration

#### Pharmacodynamics

- Serum thymidine kinase (TK) activity, a clinical biomarker for tumor response to CDK4/6 inhibition, showed excellent reduction (below limit of detection) in 9/13 patients (Figure 5).
- "On target" PD reductions in CDK4, CDK6, CDK2, and Cyclin E levels were observed in peripheral blood mononuclear cells.

# Figure 5: Serum TK Reduction Across Dose Levels



Abbreviations: BL, baseline; C, Cycle; D, Day; DL, dose level; TK, thymidine kinase

#### CONCLUSIONS

- BTX-9341 monotherapy shows a favorable safety profile, with the most common TRAEs being decreased neutrophil and white blood cell counts.
- BTX-9341 demonstrated encouraging preliminary PK/PD as well as efficacy, including at doses that were tolerable, enabling further evaluation of monotherapy and in combination with fulvestrant.
- The trial will continue to enroll through completion of the dose expansion phase. (Clinical trial: NCT06515470).



http://www.biotheryx.com