Discovery of CDK4/6 bifunctional degraders for ER+/HER2- breast cancer

Hannah Majeski, Akinori Okano, Angela Pasis, Casey Carlson, Kirti Chahal, Qiao Liu, Arvind Shakya, Shenlin Huang, Aparajita Hoskote Chourasia and Leah Fung Biotheryx, Inc., San Diego, CA

BACKGROUND

CDK4 and CDK6 are kinases cycle progression through the phosphorylation retinoblastoma (RB) which protein releases factor E2F, driving cycle promoting

genes. CDK4/6 are clinically validated targets in ER+/HER2- breast cancer, with multiple CDK4/6 inhibitors (CDK4/6i) approved for use in this indication, but resistance remains an issue with >20% of patients exhibiting intrinsic resistance and up to 70% of patients developing acquired resistance within 3 years. 1 Many resistance mechanisms converge on the upregulation of CDK6.²⁻⁵ To address this we sought to generate CDK4/6 bifunctional degraders.

METHODS

- PRODEGY platform was utilized to develop a series of cereblon (CRBN) mediated CDK4/6 bifunctional degraders including BTX-BD02-04 and development candidate BTX-9341.
- Knockout cell lines were generated by nucleofection of Cas9-gRNA complexes.
- Target degradation was analyzed by immunoblots of protein lysates from cells treated with BTX-9341 for 6 hours or as indicated.
- Phosphorylated RB was analyzed by in cell western after 24 hours of treatment
- Cell cycle analysis was performed after 24 hours of treatment by flow cytometry following propidium iodide staining.
- proliferation was measured by CellTiter-Glo 2.0 assay (Promega) after a 10-day colony formation assay.
- Vehicle, CDK4/6 inhibitor(s), BTX-BD04 and BTX-9341 were dosed orally in BALB/c nude mice MCF7 xenograft subcutaneous and/or intracranial models.

RESULTS

- BTX-9341 is a potent, CRBN and proteasome dependent degrader of CDK4 and CDK6 in multiple breast cancer cell lines. CDK4/6 degradation is rapid and sustained after compound washout.
- BTX-9341 exhibits a favorable safety profile in THLE2 cells and PBMCs with high μ M IC₅₀ values.
- Kinome profiling indicates BTX-9341 is more selective than the CDK4/6i palbociclib at 100 nM.
- BTX-9341 functionally inhibits cell proliferation more potently than CDK46i in multiple breast cancer cell lines with IC50s in the low nanomolar range. This enhanced efficacy is CRBN dependent.
- BTX-9341 inhibits RB phosphorylation in breast cancer cells with pRB IC_{50} s below 50 nM.
- BTX-9341 induces cell cycle arrest at low nanomolar concentrations in breast cancer cells.
- BTX-9341 retains potency in a CDK4/6i resistant cell line with CDK6 upregulation and a similar CDK4/6 degrader (BTX-BD04) maintains potency in multiple PDX CDK4/6i resistant organoid models.
- BTX-9341 exhibits good tumor exposure when dosed orally, and induces a dose-dependent reduction in CDK4, CDK6, and pRB levels in MCF7 xenograft tumors.
- BTX-9341 exhibit dose dependent tumor growth inhibition and tumor regression at higher doses in an MCF7 xenograft model.
- BTD-BD04 is more efficacious than abemaciclib in an MCF7 intracranial model. BTX-BD04 had greater tumor growth inhibition than abemaciclib and this led to higher survival.

BTX-9341 exhibits rapid, potent and sustained CDK4 and CDK6 degradation that is CRBN and proteasome dependent

Degradation of CDK4 and CDK6 at 6 hours of treatment Degradation of CDK4 and CDK6 at 6 hours of treatment in MCF7 and T47D cells in MDA-MB-231 cells

Degradation of CDK4 and CDK6 at 6 hours

BTX-9341 exhibits favorable safety profile in PBMCs and THLE2

BTX-9341 exhibits selective binding

among the 468 kinases tested with the KINOMEscan™ platform from Eurofins.

Compound	Kinome S(35) score @100nM	Palbociclib % of control BTX-9341 % of control CDK4: 0.5 SM695 CDK4: 0.55 TTK: 33 TTK: 1.3 ULK2: 5.6 TK STK16: 33 SNARK: 18 HIPK2: 21 STEPIP5K2C: 28
BTX-9341 Palbociclib	0.01 0.027	CK1 CSNK2A2: 22 CLK4: 23 STK16: 31 CLK1: 34 AGCPIP5K2C: 27 OTHER
Compound	CDK6 Kd	CLK1 CLK4 HIPK2 SNARK
BTX-9341	31 nM	CAMK CMGC CAMK
Palbociclib	5.1 nM	Kinome S(35) score: the fraction of kinases with less than 35% of control at 100nM

CDK4/6 bifunctional degraders inhibit proliferation in CDK4/6i resistant models is CRBN dependent

BTX-9341 potently inhibits downstream signaling and cell proliferation in vitro in HR+/HER2- BC cells, CDK4/6i resistant cells and TNBC

BTX-9341inhibits pRB in BC cells

pRB In Cell Western

Concentration (uM)

Abstract ID (Temp. ID): 1083 (423076)

CDK4/6 bifunctional degrader inhibits CDK4/6i resistant breast cancer patients derived organoids ex vivo

Patients derived PDX models showed in vivo resistance to palbociclib with CRO. PDX samples were treated ex vivo with compounds for 6 days. * Refractory to Fulvestrant+palbociclib

BTX-9341 induces more potent tumor growth inhibition

that CDK4/6i in an MCF7 xenograft model

BTX-9341 induces tumor regression in MCF7 xenograft model

BTX-9341 degrades CDK4, and CDK6 and inhibits pRB in MCF7subcutaneous tumors BTX-9341 pRB/RB BTX-9341 CDK BTX-9341 exhibits 50 mg/kg QD which correlates with 100 mg/kg QD 25 mg/kg BID 12.5 mg/kg QD PK 25 mg/kg QD PK 50 mg/kg QD Pk relative to total RB 100 mg/kg QD PK that is rapid and - 25 mg/kg BID PK BTX-9341 CDK6 BTX-9341 CDK4 BTX-9341 exhibits dose-

BTX-9341 inhibits RB

generated by in cell western for total RB and

phosphorylation after 24 ours of treatment. Data

a ratio and normalized

o DMSO treated

BTX-9341 exhibits dose-dependent tumor growth inhibition with tumor regression at 100 mpk QD and 25 mpk BID for BTX-9341

BTX-BD04 inhibits tumor growth and promotes survival in an intracranial MCF7 xenograft model

1.007

8.853

Compound	AUC Brain/Plasma ratio	Kp,uu Brain
Palbociclib	0.227	
Ribociclib	0.216	
Abemaciclib	0.579	
BTX-BD04	1.25	
BTX-9341	1.36	2.17

Comparison

Vehicle vs. Abemaciclib

Vehicle vs. BTX-BD04

Abemaciclib vs. BTX-

CONCLUSIONS

a dose-dependent decrease

relative to total RB in and

MCF7 xenograft efficacy model. Decreases in pRE

more significant than

CDK4/6i at dose levels higher than 25mpk.

These preclinical data show that BTX-9341 is more potent in in vitro and in vivo compared to CDK4/6 inhibitors and induced tumor regression at some doses in an MCF7 xenograft model. BTX-9341 exhibited efficacy in a Palbociclib-resistant cell line and a CDK4/6 degrader showed efficacy in several CDK4/6i-resistant PDX organoid models indicating that a degrader approach may work well in patients who are resistant to CDK4/6 inhibitors. CDK4/6 degraders had good exposure in the brain in mice, and POC degrader BTX-BD04 showed enhanced tumor growth inhibition and increased survival in an MCF7 intracranial model compared to brain penetrant CDK4/6i abemaciclib, indicating that a degrader could have enhanced efficacy in patients with brain metastases. BTX-9341 displayed rapid, potent and sustained degradation of its targets, which led to excellent potency in vitro including in resistant models. BTX-9341 also exhibited potent in vivo degradation and tumor growth inhibition. Considering these properties, we have recently progressed BTX-9341 into IND enabling studies.

- . Scheidemann, E.R., et al. *Int J Mol Sci* **22**, 12292 (2021).
- Álvarez-Fernández, M., et al. *Cancer Cell* **37**, 514-529 (2020)
- Li, Z., et al. *Cancer Cell* **34**, 893-904 (2018).
- 4. Li, Q., et al. Cancer Discovery 12, 356-371 (2022).
- . Razavi, P., et al. *Cancer Cell* **34**, 427-438 (2018).

http://www.biotheryx.com hmajeski@biotheryx.com