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ABSTRACT
◥

Mutations within the oncogene KRAS drive an estimated 25%
of all cancers. Only allele-specific KRAS G12C inhibitors are
currently available and are associated with the emergence of
acquired resistance, partly due to upstream pathway reactivation.
Given its upstream role in the activation of KRAS, son of
sevenless homolog 1 (SOS1), has emerged as an attractive ther-
apeutic target. Agents that target SOS1 for degradation could
represent a potential pan-KRAS modality that may be capable of
circumventing certain acquired resistance mechanisms. Here, we
report the development of two SOS1 cereblon-based bifunctional
degraders, BTX-6654 and BTX-7312, cereblon-based bifunction-
al SOS1 degraders. Both compounds exhibited potent target-
dependent and -specific SOS1 degradation. BTX-6654 and BTX-
7312 reduced downstream signaling markers, pERK and pS6, and
displayed antiproliferative activity in cells harboring various
KRAS mutations. In two KRAS G12C xenograft models, BTX-
6654 degraded SOS1 in a dose-dependent manner correlating
with tumor growth inhibition, additionally exhibiting synergy

with KRAS and MEK inhibitors. Altogether, BTX-6654 provided
preclinical proof of concept for single-agent and combination use
of bifunctional SOS1 degraders in KRAS-driven cancers.
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Introduction
KRAS mutations are found in approximately 20%–25% of all

cancers and are heavily implicated in non–small cell lung cancers
(NSCLC), pancreatic ductal adenocarcinomas (PDAC), and colorectal
cancers (1). KRAS GTPase activity acts as a molecular switch alter-
nating between an active GTP-bound state and an inactive GDP-
bound state.KRASmutations typically are found at G12, G13, andQ61
and favor the active GTP-bound state by impairing hydrolysis through
occluding interactions with GTPase-activating proteins (G12, G13
mutants) or with the water molecule required for hydrolysis (Q61
mutants; ref. 2). Mutant KRAS primarily acts through the RAF/ME-
K/ERK pathway to promote proliferation and tumorigenesis.

Identification of a novel binding pocket in KRAS G12C proteins
allowed for development of KRAS G12C allele-specific covalent
inhibitors that exhibit mutant-specific antiproliferative effects in
preclinical models (3). KRAS G12C inhibitors sotorasib and adagrasib
have received FDA approval for use in NSCLC (4, 5). Despite the
initial clinical success of these inhibitors, acquired resistance emerges,

rendering them ineffective through the upregulation of receptor
tyrosine kinases (RTK), RAS amplification, and the emergence of
other KRAS-mutant alleles (6). Drug-anchored CRISPR screens and
drug combination studies have identified upstream effectors of KRAS
(e.g., EGFR, SHP2, SOS1) that synergize with KRAS inhibitors in vitro
and in vivo (4, 7, 8).

Directly upstream of KRAS, SOS1 is the guanine nucleotide
exchange factor (GEF) that interacts with KRAS to convert it from
an inactive to an active state (9). While KRAS-mutant proteins favor
the active state, they continue to cycle between GDP- and GTP-loaded
states and require nucleotide exchange for subsequent activation (10).
In addition, SOS1 is subject to negative feedback loops mediated by
ERK phosphorylation to attenuate its GEF activity (11). Both direct
and indirect functions make SOS1 an ideal target for single-agent and
combination treatments. Consistent with this, genetic disruption of
SOS1 resulted in tumor growth inhibition (TGI) in mutant KRAS
xenograftmodels (12, 13). Recently, small-molecule inhibitors of SOS1
BI-3406 andMRTX0902, which bind to the SOS1 catalytic domain and
block interaction with KRAS, displayed TGI inKRAS-mutant cell lines
as single agents (7, 14). Combining SOS1 inhibitors with KRAS G12C
orMEK inhibitors resulted in greater TGI in KRAS-driven xenografts.

Targeted protein degradation by proteolysis-targeting chimeras
(PROTAC)/bifunctional degraders has emerged as an attractive cancer
treatment modality (15). Bifunctional degraders contain a target-
specific and an E3 ligase-specific ligand connected through a linker,
allowing for ternary complex formation and subsequent ubiquitina-
tion and proteasome-mediated target degradation. This target removal
abrogates both enzymatic and nonenzymatic functions of the protein,
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allowing for greater potency than inhibition alone. SOS1 is a
potential candidate for degradation-based therapeutics as current
SOS1 inhibitors target only the catalytic domain but not its allo-
steric and putative RAC-GEF domains (16, 17). Recent reports have
highlighted two VHL-based SOS1 degraders providing TGI in
KRAS-mutant xenografts (18, 19). In addition, the synthesis of
cereblon-based SOS1 degraders with antiproliferative effects at
micromolar concentrations in colorectal cancer cell lines has been
reported previously (20).

Here we describe the development of SOS1 degraders BTX-6654
and BTX-7312, which utilize cereblon as their E3 ligase target. These
compounds exhibited rapid, potent, and specific degradation of SOS1,
translating into downstream pathway inhibition and reduction in cell
viability in a variety of KRAS-mutant cancer cell lines. Both SOS1
degraders synergized with RTK, mutant-specific KRAS, and MEK
inhibitors in proliferation assays. BTX-6654 degraded SOS1 with >
85% in KRAS-mutant xenograft models resulting in TGI. Enhanced
TGI was observed when BTX-6654 was combined with the KRAS
G12C inhibitor, sotorasib, and theMEK inhibitor, trametinib. Togeth-
er, these results demonstrate the potentiality of SOS1 degraders as
therapeutic agents in KRAS-driven cancers, both as single agents and
in combination regimens.

Materials and Methods
Synthesis of BTX-6654 and BTX-7312

Compound syntheses and characterization are described in Sup-
plementary Materials and Methods.

Cell lines, cell culture, and other compounds
A complete list of the cell lines, source of purchase, and media used

in this study is shown in Supplementary Table S1. Cell lines were
authenticated by the providers using short tandem repeat profiling and
routinely tested for the presence ofMycoplasma using the MycoAlert
Mycoplasma Detection Kit (Lonza). Cells were cultured at 37�C and
5% CO2, except for SW620, SW837, and SW1573, which were grown
under 0%CO2, andwere kept in culture for no longer than 1.5months.
Sotorasib (Bioduro-Sundia), MRTX1133 (ref. 21; MedChemExpress),
trametinib (ref. 22; SelleckChem), afatinib (ref. 23;MedChemExpress),
CC-220 (ref. 24; MedChemExpress), MG132 (ref. 25; Bio-Techne),
and MLN4924 (ref. 26; Bio-Techne) were dissolved in DMSO at
30mmol/L stock concentrations and stored at�20

o

C. SOS1 degraders,
ligands, and N-methyl versions were synthesized by Bioduro-Sundia
and prepared as described above.

Immunoblotting
For two-dimensional (2D) assays, cells were plated in standard

tissue culture-treated 12-well plates and allowed to adhere overnight.
The following day, cells were treated with DMSO (control) or the
indicated compounds and doses for predetermined times. Lysates were
harvested in RIPA Lysis buffer containing protease and phosphatase
inhibitors (Thermo Fisher Scientific Pierce RIPA Lysis Buffer; Halt
Protease Inhibitor Cocktail; and Halt Phosphatase Inhibitor Cocktail).
For three-dimensional (3D) assays, cells were plated in 24-well Aggre-
Well 400 Microwell Culture plates (StemCell Technologies) prerinsed
with anti-adherence rinsing solution (StemCell Technologies) in
culturing media. After overnight incubation, media was removed and
replenished with media containing DMSO (control) or the compound
for predetermined times. Lysates were harvested in RIPA Lysis buffer
containing protease and phosphatase inhibitors, stored at –80�C, and
quantified using Bio-Rad DC Protein Assay. Loading samples were

prepared in LithiumDodecyl Sulfate (LDS) Sample Buffer (Invitrogen)
and 10% final concentration of 2-mercaptoethanol (MilliporeSigma).

Samples (15mg) in 4%–12%Bis-Tris SDS-PAGE gelswere run in 1�
MOPS SDS buffer, followed by wet transfer to nitrocellulose mem-
brane using 20% methanol in 1� transfer buffer for 75 minutes at
110 V. Blots were blocked with Intercept blocking buffer (LI-COR
Biosciences) for 1 hour at room temperature. Primary antibody was
prepared in blocking buffer and incubated overnight at 4�C. All
antibodies are listed in Supplementary Table S2. The following day,
blots were washed with 0.1% PBS-Tween and incubated with second-
ary antibody diluted in blocking buffer for 1 hour at room temperature
protected from light. Blots were washed with 0.1% PBS-Tween and
imaged on the LI-COR Odyssey CLx Imager. Signals for each protein
were determined using Image Studio 5.2. Proteins were normalized to
b-actin as loading control. Phosphorylated proteins were normalized
to the respective total protein signals. Changes in signals were repre-
sented as % of DMSO by taking the signal ratio of treatment normal-
ized signal to DMSO normalized signal. Relative IC50s were used to
calculate the IC50 values for phospho-ERK (pERK) and phospho-
ribosomal protein S6 (pS6).

Cereblon with SOS1 ternary complex formation alphascreen
assay

The N-term Flag-2xStrepII tagged full-length human cereblon
bound to full-length human C-term HA-His-tagged DDB1 was puri-
fied. The N-term GST-tagged SOS1 exchange domain was purchased
(Cytoskeleton, Inc.). Ternary complex formation of GST-SOS1and
FLG-cereblon/His-DDB1 mediated by SOS1 degraders was measured
using PerkinElmer AlphaScreen Technology. SOS1 degraders or final
0.5% DMSO carrier were titrated and incubated with final concen-
tration of 2 nmol/L GST-SOS1 and 12 nmol/L FLAG-cereblon/His-
DDB1 in 50 mmol/L HEPES pH 7.3, 50 mmol/L NaCl, 0.005% Brij35,
1 mg/mL BSA, 0.5 mmol/L TCEP assay buffer. Titrated SOS1 degra-
ders or DMSO were incubated with GST-SOS1 and FLAG-cereblon/-
His-DDB1 for 20 minutes before final concentration of 20 mg/mL of
both nickel chelate AlphaScreen donor beads and anti-GST AlphaSc-
reen acceptor beads were added. After 90 minutes, AlphaScreen signal
was measured (680 nm excitation; 520–620 nm emission), using BMG
ClarioStar AlphaScreen reading protocol. Data curves and EC50s were
processed via ActivityBase (IDBS).

SOS1 and K-RAS4B alphascreen binding assay
The N-term GST-tagged SOS1 exchange domain and N-term

His-tagged K-RAS4b were purchased (Cytoskeleton). SOS1 inhibi-
tors or degraders or final 0.5% DMSO carrier were titrated and
added to 60-nmol/L final concentration of His-KRas4B with 2-
mmol/L GTP in 50-mmol/L HEPES pH 7.3, 50-mmol/L NaCl,
0.005% Brij35, 1 mg/mL BSA, 0.5-mmol/L TCEP, 5-mmol/L MgCl2
assay buffer. Then 5-nmol/L final concentration of GST-SOS1 was
added. After 20 minutes, final concentration of 20 mg/mL of both
glutathione AlphaScreen donor beads and nickel chelate AlphaSc-
reen acceptor beads were added. After 90 minutes, AlphaScreen
signal was measured and data were processed as described above.

HiBiT assay
HiBiT cell lines (Promega) were plated in 384-well white-walled,

clear-bottom plates and incubated overnight. The following day, cells
were treated in 10-point dose–response curves in duplicate wells using
the Tecan D300e Digital Dispenser for 6 hours (GSPT1-, Ikaros-, and
Aiolos-HiBiT lines) or 24 hours (SALL4-HiBiT line).HiBiT levels were
determined by adding Nano-Glo HiBiT Lytic Reagent. Plates were

FIRST DISCLOSURE

Mol Cancer Ther; 23(4) April 2024 MOLECULAR CANCER THERAPEUTICS408

D
ow

nloaded from
 http://aacrjournals.org/m

ct/article-pdf/23/4/407/3432300/407.pdf by guest on 05 April 2024



then scanned for luminescencemeasurement on theCLARIOstar Plus.
Dose–response curves were represented as % of DMSO.

Proteomics assay
LoVo cells were treated with DMSO, 200-nmol/L BTX-6654 or

BTX-7312 for 6 hours and lysed in 8-mol/L urea, 50 mmol/L ammo-
nium bicarbonate, and benzonase. Extracted proteins were digested
with trypsin/Lys-C mix (Promega), acidified with formic acid and
desalted using AssayMap C18 cartridges mounted on an AssayMap
Bravo Platform (Agilent Technologies). Peptide concentration was
determined using a NanoDrop spectrophotometer (Thermo Fisher
Scientific) and 30 mg of total peptide was used for Tandem Mass Tag
(TMT) labeling at a 3:1 TMT-to-peptide (w/w) ratio and dried down
using a SpeedVac concentrator. Dried peptide fractions were recon-
stituted with 2% acetonitrile, 0.1% formic acid and analyzed by
LC/MS-MS using a Proxeon EASY nLC system (Thermo Fisher
Scientific) coupled to an Orbitrap Fusion Lumos mass spectrometer
equipped with FAIMS Pro device (Thermo Fisher Scientific). All mass
spectra were analyzed with SpectroMine software (Biognosys) using
the TMTpro default settings against the Uniprot human database
(reviewed entries) downloaded in April 2022. “MSstatsTMT Report”
file generated by SpectroMine was used to detect differentially abun-
dant proteins using R package MSstatsTMT (v2.8.0; ref. 27). Protein
summarization and normalization were performed, followed by test-
ing for differential protein abundance across experimental conditions.

Generation of knockout cell lines (cereblon, SOS1, and SOS2)
CRISPR-Cas9 system was used to generate cereblon, SOS1, and

SOS2 knockouts (KO). Target-specific crRNAs (cereblon: AAAAT-
CCTGTTCTTCTCGAT, SOS1: GCATCCTTTCCAGTGTACTC,
SOS2: GAGAACAGTCCGAAATGGCG) were annealed to tracrRNA
(IDT) to generate guide RNAs (gRNA). The RNP complex were
assembled by mixing cas9 nuclease (IDT) with gRNAs and nucleo-
fected along with Alt-R cas9 electroporation enhancer (IDT) into their
respective cell lines using SF Cell Line 4D-Nucloefector X Kit (Lonza),
4D-Nucleofector Core Unit (Lonza) and X Unit (Lonza). KO clones
were grown from single colonies for SOS1 KO cell lines whereas KO
pools were utilized for cereblon and SOS2 KO cell lines. All KO cell
lines were confirmed by immunoblotting.

H358 SOS1-binding mutant cell line generation
N-terminally 3xFLAG-tagged SOS1 [wild-type (WT), H905V, and

N879A/H905V] plasmid constructs were designed and purchased
(VectorBuilder). Lenti-XHEK293T (Takara Bio) cells were transfected
with plasmids using Lenti-X Packaging Single Shots (Takara Bio).
Supernatants were collected 48 hours after transfection and concen-
trated using Lenti-X Concentrator (Takara Bio). H358 SOS1 KO cells
were transduced with lentivirus with polybrene and selected in media
containing 1 mg/mL puromycin (Sigma-Aldrich). Lentiviral expres-
sion was confirmed with immunoblotting.

Cell viability assays
For 2D cell viability assays, cells were plated and incubated over-

night in 96-well white-walled, clear-bottom plates (Perkin Elmer)
for EBC-1, NCI-H358, MIA PaCa-2, HEK293 and normal human
lung fibroblast (NHLF) cells or 384-well white-walled, clear-bottom
plates (Thermo Fisher Scientific) for K562 cells. The following day,
cells were treated in 9-point dose–response curves in duplicate wells
using the Tecan D300e Digital Dispenser and incubated for 3 days at
37�C. Cell viability was determined by adding CellTiter-Glo 2.0 Cell
Viability Assay (Promega). Plates were then scanned for luminescence

measurement on the CLARIOstar Plus. Dose–response curves were
represented as % of DMSO generated using the four parameters
variable slope in GraphPad Prism 9. SOS1 degrader-sensitive cells
were defined as those displaying ≥30% reduction in cell viability with
relative IC50 values <150 nmol/L.

For 3D cell viability assays, cells were plated and incubated for 1–
2 days (depending on the cell line) in 96-well black-walled, clear
round-bottom, ultra-low attachment plates (Corning). Following
initial incubation, cells were treated in 9-point dose–response curves
in duplicate wells using the Tecan D300e Digital Dispenser and
incubated for 5–6 days at 37�C to allow for at least two cell doubling
times. Cell viability was determined by adding CellTiter-Glo 3D
Cell Viability Assay (Promega). Luminescence measurements and
IC50 value calculations were determined as described above.

Drug combination assays
Cells were plated as described above and cotreated with BTX-6654

or BTX-7312 and sotorasib or MRTX1133 or trametinib or afatinib in
duplicate. Defined compound concentrations were determined by the
IC50 of each compound and establishing doses where drugs had
negligible to maximal potency on cell viability in a 5�8 matrix. Cell
viability was measured using CellTiter-Glo 3D Cell Viability Assay.
Bliss and Loewe analysis was conducted using SynergyFinder 3.0
software, with highly synergistic interactions displaying scores greater
than þ10 (28). Most synergistic area (MSA) values represent the
average values of a 3�3 portion of the matrix for all drug combina-
tions. The maximum fold change in RAS pathway inhibitor IC50 was
determined by dividing the inhibitor-alone IC50 by the IC50 value of
the inhibitor in combination with a defined concentration of SOS1
degrader. Synergy between two drugs was defined by two factors: a
value >10 for the MSA in either Bliss or Loewe synergy analysis and a
>3-fold reduction in IC50 of the RAS pathway inhibitor when used in
combination.

Pharmacokinetic studies in mice
Balb/c nude female mice (Beijing Vital River Laboratory Animal

Technology Co.) were given either a bolus intravenous or intraper-
itoneal dose in 10% captisol in 50-mmol/L citrate buffer pH 5.0 buffer.
Blood samples were obtained by retro-orbital bleed while the animals
were anesthetized with isoflurane or by terminal cardiac puncture. In
studies in which tumor samples were collected, blood was collected by
terminal cardiac puncture after animals were euthanized with CO2.
Blood samples were collected at the indicated times in tubes containing
K2EDTA as anticoagulant. Samples were centrifuged within 1 hour of
collection and plasma was collected, diluted 1:1 with 25-mmol/L
citrate buffer (pH 1.5) and stored at –80�C until analysis. Total
compound concentrations were determined by LC/MS-MS. Where
tumor concentration was determined, tumors were collected from 4
animals at each timepoint, weighed, and stored at –80�Cuntil analysis.
Tumor homogenate concentrations were converted to tumor concen-
trations to calculate tumor-to-plasma ratios. All in vivo studies were
approved and performed in accordance with the local guidelines of the
Institutional Animal Care and Use Committee.

Xenograft models
Efficacy studies were performed using NCI-H358 and MiaPaCa-2

models. For the combination studies, xMiaPaCa-2 cells were utilized.
6 to 8 weeks old female Balb/c nude mice were inoculated subcuta-
neously with either NCI-H358 (5 � 106 with matrigel), MiaPaCa-2
(10� 106 with matrigel) or xMiaPaCa-2 (10� 106 with matrigel) cells
in the right flank. Dosing started when the tumor volume reached
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Figure 1.

BTX-6654 andBTX-7312 are potent, rapid, and selective degraders of SOS1.A,Chemical structures for bifunctional cereblon-SOS1 degraders BTX-6654 and BTX-
7312, their respective ligands 1 and 2 as well as N-methyl versions BTX-9822 and BTX-10133. B, Left, Immunoblot analysis for SOS1 and SOS2 after treatment of
BTX-6654, BTX-6608 (2 mmol/L), BTX-7312 or BTX-9799 (2 mmol/L) at the indicated doses for 24 hours in MIA PaCa-2 and LoVo cells. Right, Line graph
quantification of SOS1 and SOS2 from immunoblots. C, Cereblon-SOS1 ternary complex formation analysis by AlphaScreen of the indicated compounds.
(Continued on the following page.)
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approximately 150 mm3. Tumor volumes and body weights were
measured twice weekly. Plasma and tumor samples were collected at
the end of study for pharmacokinetic and pharmacodynamic analysis.

Statistical analysis
All data are presented as mean � SD unless mentioned otherwise.

Statistical significance was assessed by the two-tailed t test using
GraphPad Prism 8.0 software. Differences were considered statistically
significant at �, P < 0.05; ��, P < 0.01; ���, P < 0.001.

Data availability statement
The data generated in this study are available in the article and its

Supplementary Data files.

Results
SOS1 degradation by BTX-6654 and BTX-7312 is rapid and
specific

BTX-6654 and BTX-7312 (Fig. 1A) were leads from initial screen-
ing to identify bifunctional SOS1 degraders. These utilized two dif-
ferent precedented target-binding ligands based on the phthalazine (1,
BTX-6654; ref. 29) or pyrrolopyrimidine (2, BTX-7312; ref. 30) scaf-
fold with a 6-fluoro isoindoline cereblon binding moiety. Both ligands
represent SOS1 inhibitors. Treatment of BTX-6654 and BTX-7312 for
24 hours in MIA PaCa-2 (KRAS G12C, PDAC) cells resulted in a
maximum SOS1 degradation (Dmax) up to 96% and half-maximal
degradation concentration (DC50) values of 2.4 and 0.5 nmol/L,
respectively (Fig. 1B). LoVo (KRAS G13D, colorectal cancer) cells
treated with SOS1 degraders displayed up to 97% SOS1 degradation
and DC50 values of 10.1 nmol/L (BTX-6654) and 3.9 nmol/L (BTX-
7312; Fig. 1B). Like other bifunctional protein degraders, BTX-6654
displayed a minor hook effect in MIA PaCa-2 cells, with SOS1
degradation decreasing at higher concentrations due to saturation of
cereblon or SOS1 binding sites, lowering the ability to form ternary
complexes. The lack of a hook effect in BTX-6654-treated LoVo cells
stems fromdifferences in expression levels of the bifunctional degrader
substrates. Lower expression levels of either or both substrates are
more likely to demonstrate a hook effect because the binding sites
reach saturation quicker. Consistent with this notion, analysis from the
CancerDependencyMap (DepMap) Portal (31) revealed that cereblon
and SOS1 levels [log2(transcripts per millionþ1)] were lower in MIA
PaCa-2 (3.9, 2.7) compared with LoVo (4.2, 3.9), respectively. In
addition, no hook effect was observed with BTX-7312 up to 2 mmol/L
in both cell lines, with SOS1 remaining nearly completely degraded
across a wide range of concentrations. The lack of hook effect with BTX-
7312 suggests that this degrader demonstrates higher cooperative
efficiency over BTX-6654 with the ternary complex formation out-
competing the individual binary complex formation better with BTX-
7312 (32).Thisprevents saturationof thebinary complexes, andnohook
effect is observed. Both compounds displayed similar EC50s for ternary
complex formation and IC50 values for SOS1 binding, as measured by
AlphaScreen assays (Fig. 1C and D; Supplementary Table S3).

Stable, long-lived protein targets with slow resynthesis rates are
particularly susceptible to the extended effects of protein degradation.

Because SOS1 half-life is >18 hours (33), drug washout experiments
were performed to track its resynthesis over time. SOS1 was efficiently
degraded following a 24 hours treatment and remained completely
degraded 24 hours after washout with both BTX-6654 and BTX-7312
in MIA PaCa-2 cells, whereas SOS1 levels rose to approximately 35%
relative to the DMSO control in LoVo cells (Fig. 1E). On the basis of
these results, we anticipate that SOS1 re-expression would take 48–
72 hours after washout to reach basal levels in LoVo cells. We then
determined the kinetics of SOS1 degradation with both compounds
over a 6-hour time course in MIA PaCa-2 and LoVo cells. SOS1
degradation demonstrated concentration and time dependence with
BTX-6654 and BTX-7312, with maximal degradation occurring at 6
and 4 hours, respectively, in both cell lines (Fig. 1F).

Next, we sought to determine SOS1 degrader specificity by exam-
ining SOS1 ortholog (SOS2), known complex-interactors, and neo-
substrates associatedwith cereblon binders. Despite the high structural
similarities between SOS1 and SOS2, BTX-6654 andBTX-7312 did not
degrade SOS2, likely due to failed pi-interaction of SOS2 (V903)
required for protein–compound interaction (Fig. 1B; ref. 7). In
addition, SOS1 degraders failed to reduce protein levels for its known
complex-interactors, EGFR, GRB2, SHP2, and KRAS (Supplementary
Fig. S1A). Because cereblon bindersmay recruit other targets, we tested
whether BTX-6654 and BTX-7312 degraded known neosubstrate
targets GSPT1, Ikaros, Aiolos, SALL4, and CK1a. In HiBiT-tagged
cell lines, BTX-6654 and BTX-7312 degraded approximately 65%
SALL4, but left GSPT1, Ikaros and Aiolos unaffected (Supplementary
Fig. S1B).While SALL4 is essential for developmental processes (34), it
lacks expression in MIA PaCa-2 and LoVo cells compared with
SALL4-expressing KELLY and SK-N-DZ cells (Supplementary
Fig. S1C). While BTX-7312 had no effect on CK1a, BTX-6654
exhibited approximately 35% and approximately 60% CK1a degra-
dation in MIA PaCa-2 and LoVo cells, respectively, but only con-
centrations much higher than its Dmax for SOS1 (Supplementary
Fig. S1D).

In addition, we performed quantitative proteomics on LoVo cells
treated with BTX-6654 or BTX-7312 to identify any potential off-
targets for our SOS1 degraders. SOS1 was the most significantly
downregulated protein, with minimal effects on other proteins
(Fig. 1G). Two additional downregulated proteins (NIPSNAP3A and
PCBD1) were identified in BTX-7312–treated cells. NIPSNAP3A, a
member of NIPSNAP family proteins, localizes to lipid rafts, but its
function remains unclear and understudied (35). Loss-of-function
mutations in PCBD1, a pterin-4a-carbinolamine dehydratase that can
serve as a dimerization cofactor for the transcription factor HNF1a,
are associated with transient neonatal hyperphenyalaninemia (36, 37).
Both NIPSNAP3A and PCBD1 have no known role in cancer and the
interplay between SOS1 or the RAS pathway and these proteins
remains to be determined.

BTX-6654 and BTX-7312 require cereblon, the proteasome, and
its target-binding site for SOS1 degradation

To confirm that SOS1 degradation depended on its E3 ligase target,
cereblon, and the proteasome, we first performed a cereblon compe-
tition assay, cotreating MIA PaCa-2 and LoVo cells with BTX-6654 or

(Continued.) D, SOS1 binding analysis by AlphaScreen of the indicated compounds. E, Left, Immunoblot analysis for SOS1 after treatment with 200 nmol/L BTX-
6654 or BTX-7312 for 24 hours and the indicated timepoints after compound washout (W.O.) in MIA PaCa-2 and LoVo cells. Right, Bar graph quantification of
SOS1 protein levels from immunoblots. F, Top, Immunoblot analysis for SOS1 after treatment of BTX-6654 or BTX-7312 at the indicated doses for the indicated
timepoints in MIA PaCa-2 and LoVo cells. Bottom, Line graph quantification of SOS1 from immunoblots. G, Proteomics analysis from LoVo cells treated with
200 nmol/L BTX-6654 or BTX-7312 for 6 hours. Data are represented as average�SDof two independent experiments (B–F). Actinwas used as a loading control
in immunoblot analysis (B, E, F).
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BTX-7312 and CC-220, a cereblon-based molecular glue which out-
competes SOS1 degraders for cereblon binding at high concentra-
tions (24). Consistent with this, SOS1 degradation was rescued upon
the cotreatment of BTX-6654 and BTX-7312 in bothMIA PaCa-2 and
LoVo cells (Fig. 2A). We also utilized N-methyl glutarimide versions
of BTX-6654 (BTX-9822) and BTX-7312 (BTX-10133) which lack
affinity for cereblon to examine the cereblon dependency of SOS1
degradation. BTX-9822 and BTX-10133 failed to assemble cereblon-
SOS1 ternary complexes (Fig. 1C) and prevented SOS1 degradation in
MIA PaCa-2–treated and LoVo-treated cells (Fig. 2B). Furthermore,
cotreatment of BTX-6654 or BTX-7312 with MG132 (a proteasome
inhibitor) or MLN4924 (a NEDD8-activating enzyme inhibitor)
blocked SOS1 degradation (Fig. 2C).

BTX-6654 and BTX-7312 were designed to bind to the SOS1
catalytic pocket, requiring interaction with residues N879 and H905
for binding and subsequent degradation (7, 38). To validate this
mechanism, we generated transgenic cell lines stably expressing N-

terminally tagged FLAG-SOS1 WT or catalytic binding mutant
(H905V and N879A, H905V) constructs in NCI-H358 SOS1 KO cells
and assessed SOS1 degradation. BTX-6654 and BTX-7312 degraded
the FLAG-SOS1 WT protein but not the FLAG-SOS1 H905V and
N879A,H905V-mutant protein, confirming that these SOS1 degraders
require interactions with both residues for degradation (Fig. 2D).

SOS1 degradation reduces downstream signaling
Because KRAS-mutant cells are more sensitive to RAS pathway

inhibition in anchorage-independent/spheroid (3D) than adherent
(2D) culture conditions (5, 7, 39), we developed 3D immunoblot assays
forMIA PaCa-2 cells to determine inhibition of downstream signaling
by SOS1 degraders. BTX-6654 and BTX-7312 demonstrated low
nanomolar relative IC50 values for pERK, pS6 (S235/S236) and phos-
pho-AKT (pAKT S473) at 24 hours after treatment (Fig. 3A). Both
compounds were more potent for pERK (�4- to 15-fold IC50 values)
and pS6 (�12- to 18-fold IC50 values) inhibition than their respective
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Figure 2.

SOS1 degradation by BTX-6654 and BTX-7312 are dependent on cereblon and the proteasome.A, Left, Immunoblot analysis for SOS1 after treatment of BTX-6654 or
BTX-7312 � CC-220 (10 mmol/L) at the indicated doses for 6 hours in MIA PaCa-2 and LoVo cells. Right, Bar graph quantification of SOS1 protein levels from
immunoblots. B, Immunoblot analysis for SOS1 after treatment of the indicated compounds at 200 nmol/L for 6 hours in MIA PaCa-2 and LoVo cells. C, Top,
Immunoblot analysis for SOS1 after treatment with BTX-6654 or BTX-7312 � MG132 (10 mmol/L) or MLN4924 (1 mmol/L) at the indicated doses for 6 hours in MIA
PaCa-2 and LoVo cells. Below, Bar graph quantification of SOS1 protein levels from immunoblots. D, Top, Immunoblots for SOS1 and FLAG after treatment of BTX-
6654 or BTX-7312 at the indicated doses for 6 hours in the H358 Parental, SOS1 KO, and transgenic cell lines. Below, Bar graph quantification of SOS1 protein levels
from immunoblots. Data are represented as average � SD of two independent experiments. Actin was used as a loading control in immunoblot analysis (A–D).
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target binding ligands (compounds 1 and 2). Similarly, SOS1 degra-
dation displayed lower relative IC50 values for pAKT compared with
SOS1 inhibition in MIA PaCa-2 cells. BTX-6654 and BTX-7312
bound SOS1 with comparable affinities to their ligands, suggesting
that the added potency is derived from SOS1 degradation rather
than stronger inhibition (Fig. 1D). In addition, SOS1 degradation
inhibited downstream signaling with IC50 values ranging from 5.9–
31.1 nmol/L for pERK and 8.6–44.2 nmol/L for pS6 in LoVo and
A549 (KRAS G12S, NSCLC) cells (Fig. 3B). pAKT was only
marginally affected by SOS1 degradation, demonstrating approxi-

mately 20% maximum inhibition in these cell lines. pAKT down-
regulation in MIA PaCa-2 cells, but not A549 or LoVo cells,
suggests that the contribution of SOS1 to pAKT signaling could
be cell-type or KRAS mutation specific. Cotreatment of the degra-
ders with CC-220 rescued the reduction in pERK and pS6 signaling,
in LoVo cells, further demonstrating that the decrease in down-
stream signaling exhibited by BTX-6654 and BTX-7312 stem from
SOS1 degradation, not inhibition (Fig. 3C). Together, these results
highlight the ability of BTX-6654 and BTX-7312 to decrease pERK
and pS6 signaling by degrading SOS1.
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Figure 3.

SOS1 degradation reduces pERKandpS6 signaling inKRAS-mutant cell lines.A, Left, Immunoblot analysis for SOS1, pERK, total ERK, pS6 (S235/S236), total S6, pAKT
(S473) and total AKT after treatment of the indicated compounds at the indicated doses for 24 hours inMIA PaCa-2 cells. Right, Line graph quantification of pERK and
pS6 protein levels from immunoblots and their respective IC50 values are reported in the table. B, Left, Immunoblot analysis for SOS1, pERK, total ERK, pS6
(S235/S236), total S6, pAKT (S473), and total AKT after treatment of the indicated compounds at the indicated doses for 6 hours in LoVo and A549 cells. Right, Line
graph quantification of pERK and pS6 protein levels from immunoblots and their respective IC50 values are reported in the table. C, Left, Immunoblot analysis for
SOS1, pERK, total ERK, pS6 (S235/S236), and total S6 after treatment of BTX-6654 or BTX-7312�CC-220 (10mmol/L) at the indicated doses for 6 hours in LoVo cells.
Right, Bar graph quantification of SOS1, pERK, and pS6 protein levels from immunoblots. Data are represented as average� SD of three independent experiments.
Actin was used as a loading control in immunoblot analysis (A–C).
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Figure 4.

BTX-6654 and BTX-7312 exhibit target-dependent antiproliferative activity in various cancer cell lines. A, Cell viability analysis of EBC-1, MIA PaCa-2, and H358 cells
treated with BTX-6654 or BTX-7312 in dose–response under adherent (2D, left) and anchorage-independent (3D, right) conditions. IC50 values for each compound,
cell line, and condition are reported in the table. B, Cell viability analysis of MIA PaCa-2 cells treated with bifunctional SOS1 degraders and their ligands in dose–
response under 3D conditions. IC50 values for each compound are reported in the table. (Continued on the following page.)
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SOS1 degraders exhibit cereblon- and SOS1-dependent
antiproliferative effects across a variety of cancer cell types

We then evaluated BTX-6654 and BTX-7312 for their ability to
inhibit cell proliferation. K562 [BCR-ABL1 fusion, chronic myelog-
enous leukemia (CML)] and EBC-1 (EGFR L858R, NSCLC) were
identified via DepMap Portal (40) as SOS1-dependent cell lines.
Treatment with SOS1 degraders provided IC50 values ranging from
1.1 to 51.7 nmol/L in proliferation assays (Fig. 4A; Supplementary
Fig. S2B). BTX-S6654 and BTX-7312 inhibited proliferation in EBC-1
but had no effect onKRASG12C-mutant NCI-H358 andMIA PaCa-2
cells under 2D conditions (Fig. 4A). However, when examined under
anchorage-independent conditions, they robustly reduced viability in
EBC-1, H358, andMIA PaCa-2 cells with IC50 values ranging from 1.1
to 17.8 nmol/L (Fig. 4A). Consistent with pERK and pS6 assays, BTX-
6654 and BTX-7312 were more potent than their respective ligands,
exhibiting approximately 12- and 33-fold lower IC50 values in MIA
PaCa-2 cells (Fig. 4B).

To determine the cereblon dependency of BTX-6654 andBTX-7312
antiproliferative effects, we generated isogenic cell lines depleted for
cereblon (cereblon KO) using CRISPR-Cas9 technology in K562 and
H358 cells, with >90%KO efficiency (Fig. 4C; Supplementary Fig. S2).
BTX-6654 displayed 9- and 12-fold higher IC50 values whereas BTX-
7312 demonstrated 380- and 410-fold higher IC50 values in K562 and
H358 cereblon KO, respectively, compared with parental cells. To
confirm SOS1 selectivity, we generated SOS1 KO cell lines in MIA
PaCa-2 cells with >95% KO efficiency. Notably, SOS1 KO cells had
reduced spheroid size and cell viability compared with parental cells,
highlighting the SOS1 dependence under 3D culture conditions
(Supplementary Fig. S3). Upon treatment with BTX-6654 and
BTX-7312, no reduction in cell viability was observed in SOS1 KO
cells (Fig. 4D). Previous reports have suggested that SOS2 can play a
compensatory role when SOS1 is blocked (7). Similarly, treatment of
MIA PaCa-2 SOS2 KO cells with SOS1 degraders led to 20% greater
growth inhibition compared with parental cells (Fig. 4D). Together,
these results confirm that BTX-6654 and BTX-7312 antiproliferative
activity is concordant with their proposed mechanism of action.

We then sought to identify other EGFR-RAS-MAPK-mutant cell
lines which exhibit sensitivity to SOS1 degradation. 3D proliferation
assays formultiple cell lines harboringRAS, EGFR, or BRAFmutations
as well as cell lines with amplified WT KRAS were developed. We
identified SOS1 degradation-sensitive cell lines with KRAS amplifica-
tion (1/1), KRAS G12A (1/2), G12C (5/8), G12V (4/6), G12S (2/2),
G13C (2/3), G13D (2/4), A59T (1/1), HRAS Q61H (1/1), EGFR (3/3),
and NF1 (3/4) mutations (Fig. 4E; Supplementary Table S4). Despite
the variety ofKRASmutants sensitive to SOS1 degradation, none of the
four KRAS G12D cell lines were affected. Both SOS1 inhibitors and
degraders failed to meet our criteria of cell viability reduction in KRAS
G12D cells, suggesting that these cell lines are not sensitive to SOS1
blockage (Supplementary Table S5). Consistent with lower DC50

values, BTX-7312 was more potent than BTX-6654 across most of
the cell lines examined. However, BTX-6654 displayed a lower pro-
liferation IC50 in A549 cells. This reversal is highlighted by lower IC50

values for both pERKand pS6 for BTX-6654 comparedwith BTX-7312
in this cell line (Fig. 3B). Finally, BTX-6654 and BTX-7312 were
examined in primary and nontumorigenic cell lines to determine
potential therapeutic index. SOS1 degraders only inhibited cell pro-
liferation in HEK293 and NHLFs at 10 mmol/L and displayed IC50

values >5 mmol/L (Fig. 4F). These data suggest that SOS1 degradation
has strong antiproliferative activity in a variety of EGFR-, RAS-, and
NF1-mutant cell lines with a broad therapeutic window.

BTX-6654 treatment effectively suppresses tumor growth in
KRAS G12C xenograft models

Because incorporating saturated heterocycles to rigidify bifunction-
al degrader linkers may allow for better pharmacologic profiles, we
selected BTX-6654 for in vivo studies (41). BTX-6654 displayed
favorable exposure upon intraperitoneal dosing (Supplementary
Fig. S4A and S4B) and was examined in a 5-day PK-PD study in the
NCI-H358 model. Plasma and tumor pharmacokinetics were evalu-
ated at 2, 8, and 24 hours after last dose at the end of the study. BTX-
6654 exposures in plasma and tumor were dose proportional at 10 and
50 mg/kg (Fig. 5A). Treatment of BTX-6654 resulted in >85% SOS1
degradation in tumor samples at all timepoints for both dose levels and
displayed dose-dependent reductions of pERK coinciding with SOS1
degradation (Fig. 5B and C).

We then evaluated BTX-6654 in efficacy studies using NCI-H358
and MIA PaCa-2 xenograft models. Animals were treated twice daily
with intraperitoneal BTX-6654 at 2 and 10 mg/kg and oral SOS1
inhibitor BI3406 at 50 mg/kg. In the NCI-H358 model, dose-
dependent TGI was observed with 2 and 10 mg/kg BTX-6654 dem-
onstrating 37% (P < 0.01) and 57% (P < 0.005) TGI, respectively
(Fig. 5D). Tumor and plasma pharmacokinetic collection as well as
SOS1 degradation were evaluated at 2, 8, and 24 hours after last dose at
the end of the studies. Consistent with TGI, higher degradation
correlated with higher BTX-6654 exposure levels, resulting in up to
90% SOS1 degradation (10 mg/kg) with peak SOS1 degradation at
8 hours after dosing (Fig. 5E–G). In theMIA PaCa-2 xenograft model,
treatment with 2 and 10mg/kg of BTX-6654 resulted in 33% (P < 0.05)
and 43% (P < 0.01) tumor volume reductions, respectively (Fig. 5H).
Pharmacokinetic and pharmacodynamic analysis of MIA PaCa-2
tumor revealed higher SOS1 degradation at higher doses, reaching
97% degradation at the 10 mg/kg dose (Fig. 5I–K). Both BTX-6654
dosing levels were well tolerated in both models (Supplementary
Fig. S4C and S5D). In addition, the tumor concentration of BTX-
6654 is sufficient to maintain suppression of SOS1. Although the
modes of administration differed between BTX-6654 and BI-3406,
comparable efficacies were observed in both models.

SOS1 degraders synergize with EGFR, KRAS, and MEK inhibitors
in vitro and in vivo

Previous studies have reported an antiproliferative synergy
effect between SOS1 inhibitors and EGFR, KRAS, and MEK inhibi-
tors (7, 14, 42, 43). Therefore, we explored potential BTX-6654 and
BTX-7312 synergy with inhibitors of KRAS G12C (sotorasib), G12D

(Continued.) C, Left, Immunoblot analysis for cereblon from parental and cereblon KO H358 cells. Right, Cell viability analysis of parental and cereblon KO H358
cells treated with BTX-6654 or BTX-7312 in dose–response under 3D conditions. IC50 values for each compound and cell line are reported in the table below.
D, Left, Immunoblot analysis for SOS1 andSOS2 fromparental, SOS1 KO, andSOS2KOMIAPaCa-2 cells. Right, Cell viability analysis of parental, SOS1 KO, andSOS2KO
MIA PaCa-2 cells treated with BTX-6654 or BTX-7312 in dose–response under 3D conditions. IC50 values for each compound and cell line are reported in the table
below. E, Top, Bar graph quantification of IC50 values from SOS1 bifunctional protein degrader-sensitive cell lines under 3D conditions. Below, Heat map displaying
zygosity for the indicated mutations for the cell lines displayed on top. F, Cell viability analysis of HEK293 and NHLF cells treated with BTX-6654 and BTX-7312 in
dose–response under 2D conditions. Data are represented as average � SD of at least three independent experiments. Actin was used as a loading control in
immunoblot analysis (C, D).
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(MRTX1133; ref. 21), MEK (trametinib; ref. 22), and ERBB (afatinib;
ref. 23) in 3D proliferation assays. To score for synergy, we established
a threshold where the drug combination must produce a value >10 for
the MSA in either Bliss or Loewe synergy analysis and reduce the IC50

of the RTK-RAS-MAPK inhibitor by >3-fold when used in combi-
nation. SOS1 degraders displayed synergistic effects with sotorasib,
trametinib, and afatinib across multiple cell lines harboring different

KRASmutations (Fig. 6A andB; Supplementary Fig. S5). This was not
limited to KRAS-mutant cells as SOS1 degradation and MEK inhibi-
tion demonstrated synergy in K562 cells. Notably, synergy was
observed even in cell lines insensitive to SOS1 degradation alone. For
example, SOS1 degraders exhibited strong synergistic scores with
sotorasib and trametinib combinations in SW1573 (KRAS G12C)
cells. Similarly, synergy was observed with MRTX1133 and SOS1
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Figure 6.

SOS1 degraders demonstrate synergy with various RTK-RAS-MAPK inhibitors in vitro and in xenograft models. A, Heat maps displaying percent growth inhibition,
Bliss synergy, Loewe synergy, and bar graph quantification of IC50 values for RTK-RAS-MAPK inhibitorswith BTX-6654 in MIA PaCa-2 or GP2D cells in 3D conditions.
White boxes indicate MSA. B, Synergy analysis of all cell lines and combinations tested with BTX-6654 and BTX-7312. Heat maps depict the MSA values for Bliss and
Loewe synergy and themaximum fold change in IC50 values of RTK-RAS-MAPK inhibitor in combinationwith BTX-6654 and BTX-7312.C,Antitumor efficacy of BTX-
6654 and sotorasib alone and in combination in xMIA PaCa-2 xenografts.D,Antitumor efficacy of BTX-6654 and trametinib alone and in combination in xMIA PaCa-2
xenografts. Data are represented as average of two independent experiments (A, B). Data are represented as average � SEM from 10 mice per group (C, D). TGI,
tumor growth inhibition. Statistical significance was determined with respect to the vehicle group using a two-tailed t test (� , P < 0.05; �� , P < 0.005).

Figure 5.
BTX-6654 exhibits dose-dependent SOS1 degradation and tumor growth inhibition in KRAS G12C xenograft models. A, Plasma and tumor analysis from BTX-6654-
treated H358 tumors after 5 days. B, Bar graph quantification of SOS1 (left) and pERK (right) at the indicated doses and tumor collection timepoints. C, Immunoblot
analysis for SOS1, pERK, and ERK after the treatment with BTX-6654 at the indicated doses and collection timepoints.D,Antitumor efficacy of BTX-6654 and BI3406
in H358 xenografts for 28 days. E, Plasma and tumor analysis from BTX-6654–treated H358 tumors after 28 days. F,Bar graph quantification of SOS1 at the indicated
doses and tumor collection timepoints. G, Immunoblot analysis for SOS1 after treatment with BTX-6654 at the indicated doses and timepoints from H358 tumors.
H,Antitumor efficacy of BTX-6654 andBI3406 at the indicated doses inMIAPaCa-2 xenografts for 28 days. I,Plasmaand tumor analysis fromBTX-6654–treatedMIA
PaCa-2 tumors after 28 days. J, Bar graph quantification of SOS1 at the indicated doses and tumor collection timepoints. K, Immunoblot analysis for SOS1 after
treatmentwith BTX-6654 at the indicated doses and timepoints fromMIA PaCa-2 tumors. Data are represented as average� SEM from 10mice per group. TGI, tumor
growth inhibition. Dotted line is set at 10% SOS1 protein remaining (B, F, J). Vinculin was used as a loading control in immunoblot analysis (C, G, K). Statistical
significance was determined with respect to the vehicle group using a two-tailed t test (� , P < 0.05; �� , P < 0.01; ��� , P < 0.005).
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degraders in non-SOS1 sensitive GP2D (KRAS G12D) cells. Overall,
BTX-6654 andBTX-7312 demonstrated synergywith inhibitors acting
upstream and downstream of SOS1 across KRAS-mutant cell lines.

Next, we investigated whether the combination of sotorasib or
trametinib with BTX-6654 could enhance TGI relative to monother-
apy in the xMIA PaCa-2 xenograft model. xMiaPaCa-2 cells were
established by in vivo passaging of MiaPaCa-2 cells to achieve better
in vivo growth rate. Treatment of BTX-6654 (10 mg/kg, twice daily)
and sotorasib (10 mg/kg, once daily) as monotherapy resulted in TGI
of 43% and 40%, respectively, whereas the combination significantly
improved TGI to 83% (P < 0.005) relative to vehicle control (Fig. 6C).
Similarly, cotreatment with BTX-6654 and trametinib (0.125 mg/kg,
twice daily) enhanced TGI to 64% (P < 0.005) in xMIA PaCa-2
xenograft model (Fig. 6D). Collectively, these data illustrate the ability
of SOS1 degraders to synergize with multiple inhibitors to provide
enhanced efficacy in cultured cells and xenograft models.

Discussion
The development of bifunctional degraders expands the molecular

targeting paradigm beyond classical approaches. The catalytic mech-
anism of bifunctional degraders can provide higher potency than
small-molecule inhibitors (44). Consistentwith this, SOS1 degradation
afforded more potent inhibition of downstream signaling and cell
proliferation than their respective inhibitors. The mechanism for this,
however, remains to be elucidated.

Adding the linker and cereblon-ligand to the SOS1 ligand could
produce higher-affinity SOS1 binding. However, our results illus-
trate that both SOS1 degraders and their respective ligands bound
with near equal affinity to SOS1 and they demonstrated cereblon-
dependent activity, suggesting that enhanced inhibition of SOS1
cannot account for this difference. Alternately, degrading SOS1
might abrogate SOS1 activity mediated by other functional or
scaffolding domains not targeted by SOS1 inhibitors. The binding
of GTP-bound RAS proteins to the SOS1 allosteric domain can
boost SOS1 activity up to 500-fold and is required for tumor
growth (13, 17, 45). SOS1 also contains a putative RAC-GEF
domain with RAC-GEF activity in vitro (16, 31, 46). RAC1 activity
is required for tumorigenesis in a KRAS G12D-activated mouse
model (47). Notably, both the allosteric and RAC-GEF domains are
required for the transformative properties of the oncogenic SOS1
mutation N233Y (48). Future structure-function SOS1 analyses
may reveal whether removal of these additional roles via degrada-
tion can account for the added potency of SOS1 degraders.

While themodes of administration differed between BTX-6654 and
BI3406, both compounds exhibited similar TGI in KRAS G12C-
mutant xenografts. This was a bit surprising considering that BTX-
6654 was more potent than its inhibitor-based ligand in cell-based
assays. However, a recent study revealed that a VHL-SOS1 inhibitor-
based PROTAC (ZZ151) elicited greater TGI than BI-3406 in KRAS
G12D AsPC-1 xenografts (19). This suggests that SOS1 degradation
could allow for better TGI compared with inhibition but may depend
upon the presence of specificKRASmutations and additional comuta-
tions. Despite the potential context-dependent effects, the similar
potencies of BTX-6654 and BI3406 suggests that targeting SOS1 alone
produces only a certain level of TGI inKRASG12C-mutant xenografts
and could be due to the presence of SOS2. SOS2might compensate for
SOS1 by acting as the GEF to reload KRAS or other RAS proteins.
Targeting SOS1 alone reduces pERK and pS6 levels only to approx-
imately 40%–50% suggesting that cotargeting other RAS GEFs (e.g.,
SOS2, RASGRFs, RASGRPs) might be required to fully suppress these

downstream markers. This notion is validated by the fact that degra-
dation or inhibition of SOS1 in combination with genetic SOS2
ablation resulted in deeper growth inhibition in 3D proliferation
assays, resulting from enhanced pathway suppression (7). Despite
this limitation, BTX-6654 demonstrated that SOS1 degradation could
elicit maximal SOS1 targeting as SOS1 inhibition.

While SOS1 degraders demonstrated antiproliferative activity
across multiple KRAS-mutant cell lines, we observed no sensitivity
in KRAS G12D-mutant cell lines. Although the slower intrinsic GTP
hydrolysis rate for KRAS G12D relative to KRAS G12C could explain
this, SOS1 degraders were active in cell lines with hydrolysis rates
slower than KRAS G12D, making this explanation unlikely. Despite
the fact that previous studies reported antiproliferative effects with
SOS1 inhibitors and degraders in KRAS G12D-mutant cells (7, 19),
sensitivity to SOS1 inhibitors was not observed in our assays, possibly
due to differences in methodology. In addition, failure to reduce cell
viability in certain KRAS-mutant cell lines could be caused by cell-
intrinsic resistance to bifunctional degraders via drug efflux driven by
high MDR1 expression (49). However, synergy was observed with
allele-specificKRAS-mutant inhibitors in SOS1 non-sensitive cell lines
(GP2D, SW837, SW1573, NCI-H2030), suggesting that SOS1 degra-
ders cross cell membranes, but SOS1 degradation alone is insufficient
to drive antiproliferative activity.

SOS1 degrader activity was not limited to KRAS-mutant cancers,
but also exhibited antiproliferative effects in KRAS WT CML (K562)
cells. Analysis of SOS1 dependency in theDepMap portal revealed that
SOS1 had the highest dependency score across blood cancer cell lines
with an enrichment in CML cell lines (40, 50). Consistent with this,
genetic ablation of SOS1 reduced the leukemogenic potential of BCR-
ABL oncogene and prevented CML development in p210 BCR/ABL
mice (50, 51). While SOS1 blockade failed to inhibit proliferation in
KRAS G12D-mutated colorectal or lung cancer cell lines, SOS1
depletion relieved KRAS G12D-induced myeloproliferative neoplasm
phenotypes and extended survival in mice (52). In addition, exome
sequencing analysis has identified oncogenic mutations in SOS1 that
drive anchorage-independent growth in cellular models and tumor
growth (48). Pharmacologic intervention of SOS1 could provide a
meaningful therapeutic response in these SOS1-dependent or -driven
cancers. Given the strong dependency on SOS1 and its connectionwith
RAC activity (51), SOS1 degradation could be amore effective strategy
over SOS1 inhibition in BCR-ABL–driven CML tumor models.

Significantly, using SOS1 degraders could prevent the effects caused
by potential secondarymutations that emerge as acquired resistance to
RTK-RAS-MAPK pathway inhibitors that result in pathway reacti-
vation, as observed with targeted therapies in EGFR- and KRAS-
mutant tumors (6, 53–55). In such cases, SOS1 could provide added
benefit, given its role as a downstream mediator of RTK signaling
output. Not only did SOS1 degraders synergize with various pathway
inhibitors in vitro, but they also provided added efficacy to sotorasib
and trametinib inKRASG12C-mutant xenografts.While a low dose of
sotorasib was used in our study, we predict that a higher dose of
sotorasib with BTX-6654 would produce tumor growth stasis or
regression similar to the observed combination with adagrasib and
BI-3406 inKRASG12C xenografts (8). The enhanced potency of SOS1
degradation with KRAS G12C inhibition likely results in deeper
suppression of KRAS-GTP levels and downstream signaling mediated
by pathway reactivation of sotorasib. Collectively, our study highlights
the potential of SOS1 degradation to provide additional benefits
relative to RTK-RAS-MAPK inhibitors.

CRBN-based bifunctional degraders run the risk of also degrading
cereblon neosubstrates (56). While our SOS1 degraders were clean for
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most neosubstrates, BTX-6654 and BTX-7312 demonstrated degra-
dation of SALL4 (spalt-like transcription factor 4). SALL4 is an
embryonic C2H2 zinc finger transcription factor that mediates fetal
limb development and is cereblon neosubstrate (34, 57, 58). Deg-
radation of SALL4 is proposed to be one potential cause for
thalidomide-induced teratogenicity. While expressed in fetal issues,
downregulation of SALL4 after birth results in absent expression
except for germline cells in mice and humans (59–61). Despite this,
thalidomide and other cereblon-binding therapeutics are clinically
approved drugs for the treatment of multiple myeloma. SALL4
expression was not detected in the cancer cell lines used in this
study and does not contribute to the potency associated with the
SOS1 degraders. Notably, BTX-6654 and BTX-7312 are only being
investigated in the preclinical stage.

In summary, we developed cereblon-based degraders that induce
potent and selective degradation of SOS1. SOS1 degradation reduced
cell viability by inhibiting downstream signaling, both in KRAS-
mutant cell lines and xenograftmousemodels. Importantly, our results
highlight the benefit of combining SOS1 degraders with other RTK-
RAS-MAPK pathway inhibitors, thereby expanding the therapeutic
window for KRAS-driven cancers. In addition to KRAS-mutant can-
cers, SOS1 degradersmay represent a promising therapeutic option for
the treatment of SOS1-dependent or -driven cancers, including hema-
tologic tumors.
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