Discovery of BTX-10908, a first-in-class, orally bioavailable SOS1 bifunctional degrader, for the treatment of RTK- and KRAS-driven tumors

Abstract #: 6056

BACKGROUND

• SOS1 is a GEF which converts inactive GDP-loaded RAS proteins into the active GTPloaded RAS.¹ SOS1 acts as the primary GEF for KRAS.

KRAS is mutated in ~30% of all cancer with heavy implications in lung, colorectal and pancreatic cancers.⁴

While mutant alleles of KRAS can shift the equilibrium to favor the GTP-loaded state, it's been shown that mutant KRAS proteins still depend on upstream nucleotide exchange for activation.³⁻⁵

- SOS1's role in GTP-loading of RAS proteins as well as its ability to mitigate upstream MAPK pathway reactivation highlights its potential as an attractive therapeutic target to treat KRAS-driven cancers irrespective of mutant alleles.⁶
- Thus, we sought out to develop SOS1 bifunctional degraders for single agent and combination approaches for mutant KRAS cancers.

METHODS

- PRODEGY platform was utilized to develop a series of CRBNbased SOS1 degraders which resulted in BTX-10908.
- Western Blots under adherent cell culture conditions (2D) were used to determine SOS1 degradation (Kinetics, Washout, CRBNand Proteasomal-dependence) or under ultra-low attachment cell culture conditions (3D) were used to determine SOS1 degradation and inhibition of downstream signaling markers.
- Knockout cell lines were generated via nucleofection of Cas9gRNA complexes.
- 3D proliferation assays were performed to measure functional activity using CellTiter-Glo 3D assay.
- *In vivo* experiments were conducted in female BALB/c nude mice xenograft models.

Identification of BTX-10908 as a D.C.									
Compound		BTX-10908 (D.C. SOS1d)		10908 TBL TBL: Target-Binding Ligand		BTX-6654 (PoC SOS1	⁷ MRTX d) (SOS	MRTX0902 (SOS1i)	
H358 SOS1-HiBiT (DC ₅₀ , D _{max})		4.5nM, 90%		N/A		8.7nM, 87%	, N/.	N/A	
SOS1 Binding (IC ₅₀)		485nM		56nM		4nM	8nl	8nM	
DLD-1 pERK AlphaLISA (IC ₅₀)		3nM		93nM		110nM	80n	80nM	
K562 WT Proliferation (IC ₅₀)		1nM		>2000nM		22nM	56n	Μ	
K562 CRBN KO Proliferation (IC ₅₀)		582nM		N/A		243nM	N/	A	
MIA PaCa-2 WT 3D Proliferation (IC ₅₀)		2nM		>2000nM		1nM	49n	49nM	
MIA PaCa-2 SOS1 KO 3D Proliferation (IC ₅₀)		>2000nM		N/A		>2000nM	>200	>2000nM	
F% (across species)		16-25%		N/A		0%	38-83	38-83% ⁸	
In Vitro Potency	In Vivo Potency		Physicochemical Properties		Safety/ Tolerability	Higher Spe PK	ecies Develo	pability	
							_	1	

H358 (KRAS G12C)	
DLD-1 (KRAS G13D)	1 100
H1975 (EGFR Mutant)	

Kyle Begovich¹, Angela Schoolmeesters¹, Elena Martinez-Terroba¹ Navin Rajapakse¹, Oiao Liu¹, Arvind Shakya¹, Akinori Okano¹, Venkat Mali¹, Shenlin Huang¹, Aparajita Chourasia¹, and Leah Fung¹ ¹Biotheryx, Inc., San Diego, CA

Contact: Kyle Begovich, kbegovich@biotheryx.com